Rate-adjusted spike–LFP coherence comparisons from spike-train statistics

نویسندگان

  • Mikio C. Aoi
  • Kyle Q. Lepage
  • Mark A. Kramer
  • Uri T. Eden
چکیده

Coherence is a fundamental tool in the analysis of neuronal data and for studying multiscale interactions of single and multiunit spikes with local field potentials. However, when the coherence is used to estimate rhythmic synchrony between spiking and any other time series, the magnitude of the coherence is dependent upon the spike rate. This property is not a statistical bias, but a feature of the coherence function. This dependence confounds cross-condition comparisons of spike-field and spike-spike coherence in electrophysiological experiments. Taking inspiration from correction methods that adjust the spike rate of a recording with bootstrapping ('thinning'), we propose a method of estimating a correction factor for the spike-field and spike-spike coherence that adjusts the coherence to account for this rate dependence. We demonstrate that the proposed rate adjustment is accurate under standard assumptions and derive distributional properties of the estimator. The reduced estimation variance serves to provide a more powerful test of cross-condition differences in spike-LFP coherence than the thinning method and does not require repeated Monte Carlo trials. We also demonstrate some of the negative consequences of failing to account for rate dependence. The proposed spike-field coherence estimator accurately adjusts the spike-field coherence with respect to rate and has well-defined distributional properties that endow the estimator with lower estimation variance than the existing adjustment method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A procedure for testing across-condition rhythmic spike-field association change

Many experiments in neuroscience have compared the strength of association between neural spike trains and rhythms present in local field potential (LFP) recordings. The measure employed in these comparisons, "spike-field coherence", is a frequency dependent measure of linear association, and is shown to depend on overall neural activity (Lepage et al., 2011). Dependence upon overall neural act...

متن کامل

Inferring oscillatory modulation in neural spike trains

Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscill...

متن کامل

ϒ spike-field coherence in a population of olfactory bulb neurons differentiates between odors irrespective of associated outcome.

Studies in different sensory systems indicate that short spike patterns within a spike train that carry items of sensory information can be extracted from the overall train by using field potential oscillations as a reference (Kayser et al., 2012; Panzeri et al., 2014). Here we test the hypothesis that the local field potential (LFP) provides the temporal reference frame needed to differentiate...

متن کامل

A Bayesian supervised dual-dimensionality reduction model for simultaneous decoding of LFP and spike train signals.

Neuroscientists are increasingly collecting multimodal data during experiments and observational studies. Different data modalities-such as EEG, fMRI, LFP, and spike trains-offer different views of the complex systems contributing to neural phenomena. Here, we focus on joint modeling of LFP and spike train data, and present a novel Bayesian method for neural decoding to infer behavioral and exp...

متن کامل

Synchronization in monkey motor cortex during a precision grip task. II. effect of oscillatory activity on corticospinal output.

Recordings from primary motor cortex (M1) during periods of steady contraction show oscillatory activity; these oscillations are coherent with the activity of contralateral muscles. We investigated synchronization of corticospinal output neurons with the oscillations, which could provide the pathway for their transmission to the spinal motoneurons. One hundred seventy-six antidromically identif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Neuroscience Methods

دوره 240  شماره 

صفحات  -

تاریخ انتشار 2015